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CHAPTER 1. INTRODUCTION

1.1 Background

The resistive boundary condition was devised in order to

simplify the solution of boundary value problems involving thin lossy

dielectrics, and Harrington and Nautz (1975) have shown that it

provides a good model for such materials. Practical examples of

"resistive materlils" range from man-made lossy composite materials

used, for example, for the fin of a missile to reduce its radar

cross section, to snowflakes and smoke particles. A precise definition

of the resistive boundary condition will be given later in this

chapter.

A number of dielectric structures have been simulated by this

boundary condition. Infinite structures such as the half plane, strip

(Senior, 1979a,b) and wedge (LaHaie, 1981) have been treated

analytically, using transform techniques. Closed shells (Harrington

and Mautz, 1975; Senior and Weil, 1977) were treated by numerical

methods. There have been no previous numerical analyses of finite,

open resistive structures because of the inherent numerical difficulty

associated with such structures. This difficulty is common to any

finite, open, thin structure, resistive or perfectly conducting

alike. It arises because only the highly singular E-field integral

equation is applicable and the situation has been aggravated by the

* common belief that only E-field formulations derivable from the

,.
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Franz representation are valid (Stratton, 1941; Bouwkamp, 1947). The

various representations and their numerical implications will be

discussed in Chapter II. Because the source of numerical difficulty

in the treatment of plates is the same for all boundary conditions,

it is helpful to review the techniques used for treating perfectly

conducting plates.

Nittra et al. (1973) and Rahmat-Sammi and Mittra (1974) suggested

a way of partially integrating an E-field equation, thus reducing the

order of its singularity. Their method is a two-dimensional analog

of Hallen's integral equation for wire antennas. Unlike the one-

dimensional case, the general homogeneous solution of the differential

operator is not known. Mittra et al. proceeded by assuming that the

unknown general solution is expandable in a Fourier series and

determined the coefficients of the expansion by imposing an edge

condition along the rim of the plate. Their method works for perfectly

conducting plates, but does not extend to resistive ones.

Recently, Glisson and Wilton (1980) came up with a different

method. They used, but without justification, an E-field integral

equation based on the Stratton-Chu representation. As will be seen

in Chapter III, their numerical scheme guarantees both continuity

of the vector potential and satisfaction of the edge condition. Their

method is a breakthrough from a numerical viewpoint, but requires a

sounder theoretical basis.

The Babinet complement of a perfectly conducting plate is an

aperture in a metallic screen. Because of its great importance, the

problem of diffraction by an aperture in a plane screen has been

(I
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investigated by many authors. Most treatments involve some kind of

an approximation, either physical optics (cf. Bouwkamp, 1953), the

geometrical theory of diffraction (Keller, 1962) or low frequency

expansions. The last method is an example of Rayleigh scattering

(Lord Rayleigh, 1897). A systematic procedure for treating diffraction

by small obstacles was developed by Stevenson (1953). In the many

papers that followed, a variety of low frequency diffraction problems

were solved. Van Bladel (1977) provides a comprehensive list of the

work published through 1975.

Integral equations for the fields of small apertures were

developed by Bethe (1944). Van Bladel (1970) and his colleagues

(De Meulenaere and Van Bladel, 1977; De Smedt and Van Bladel, 1980)

attempted to solve them numerically, but with only limited success.

Butler (1974) integrated those integral equations in a manner

analogous to that used by Mittra, and numerical results have been

reported by Umashankar and Butler (1974). A different approach based

on a finite element formulation was used by Okon and Harrington (1980).

1.2 Outline of the Work

The task is to determine the fields scattered by a resistive

plate S, lying in the x-y plane (Fig. 1.1), when illuminated by a

plane wave:

iinc e i kk. nc Y& eikk ' . (1.1)

;11
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The time convention eiWt is assumed throughout. The unit

vector

k -(xcos I cos # + ycos sini +zsin*) (1.1)

is in the direction of propagation of the incident wave. a, b and k

for a right-handed orthonormal set. The resistivity R of the plate

is in general complex and a function of position. Its value can be

allowed to go to zero (the perfectly conducting limit).

ThF, problem is solved numerically by applying the moment

met'J to a suitable integral equation for the induced currents.

Because of the finite capacity of any computer, the largest plate

tbV.' can be treated at present is about a square wavelength in area.

Although this is not large enough to permit direct comparison of the

results with those obtained by asymptotic methods such as the

geometrical theory of diffraction, plates of this size are of

practical interest and display similar characteristics to larger

plates.

Special attention is paid to the low frequency limit, where

semi-analytic results can be derived from the Rayleigh series. The

first two terms of the expansion are determined, and efficient methods

are developed for the solution of the associated integral equations.

The resistive boundary condition and its relation to other

types of boundary conditions are discussed in the remaining section

of this chapter. The first half of Chapter II is devoted to a dis-

.4i cusslon of the representation of an electromagnetic field. A proof
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-. of the adequacy of the Stratton-Chu formulation for a plate is

provided there. The method of moments and some of its ramifications

are then presented, and these two topics lay the foundation for

the numerical solution of the problem in Chapter III. Several

integral equations are derived and evaluated. One is selected for

numerical treatment on the basis that it provides the fastest

convergence. Results are compared with experimental data and their

implications are discussed.

Chapters IV and V deal with the low frequency limit. The

analytical derivations are carried out in Chapter IV and the

numerical solution in Chapter V. Comparison with other methods and

some experimental and theoretical bounds for the dipole moments are

also covered in the latter chapter.

Concluding remarks and suggestions for the extension of this

work are reserved for the last chapter.

1.3 The Resistive Boundary Condition

A resistive sheet is characterized by three properties. It is

infinitesimally thin, carries only electric currents and these are

proportional to the tangential components of the electric field.

Mathematical expressions for these conditions are:

ZJ = n= 0 (1.3)

and

n x E - Rn J Rn.(,nH)I +  . (1.4)

*1i
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The proportionality factor R is related to the material

properties by

1 iZ
R = lim lim k(cr - (1.5)

h o h-o

where h is the thickness and a the conductivity of the material.

In practice, this boundary condition is applied to nonmagnetic

(U = o ), highly conductive materials whose thickness h is very small

compared with the wavelength x and the penetration depth 6. The

Imaterial is thus partially transparent. The value R = 0 corresponds

to perfect conductivity.

Equation (1.5) does not determine the frequency dependence of

R. Empirically, the resistivities of resistive sheets remain

constant over a broad range of frequencies, and in fact are measured

at dc. Thus it can be assumed that the resistivity R is independent

of k, at low frequencies at least.

The resistive boundary condition is related to two other types

of boundary conditions: the conductive and the impedance boundary

conditions.

The conductive boundary condition is the dual of the

resistive one. A conductive sheet supports only magnetic currents

(J n[ • 0), which are related to the tangential components of

the magnetic field by

- __ L.-~
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1 R*nAJ*.-R.nnAEI+

and

R* 1in tYW -,- I 1)h

This is a fictitious kind of material. The only practical importance

of the boundary condition is that combined with a resistive sheet

it produces an impedance sheet.

An impedance sheet is an opaque (i.e., h >> 6), thin (h << A)

layer supporting both electric and magnetic currents. These currents

are related to each other, and on each face of the sheet
'-.

nACn.E) = -nZn.R (1.6)

For a planar sheet this relation reads

- = , ~. +  = ,zH
x y , y

The upper and lower signs refer to the top and bottom faces

respectively.

By writing the resistive and conductive boundary conditions
for planar sheets in the forms

Ex  = -2R(H - HY) E = -2R(H-H)

Ex -+ - +(Hy , Ey - 1 (H +
x x 2 y y' y y x x
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and assuming coexistence of magnetic and electric currents, Senior

- (1978) obtained

+

E- [R H+ +[yH

y y

These relations turn into the impedance boundary condition if

nZ = 2R = 1/2R*.

Thus the electric and magnetic currents induced on an impedance

sheet are the same as those on a resistive and a conductive sheet

with R = (I/2)nZ and R* = l/(2nZ), respectively.

Having solved for the currents on a resistive plate, the

magnetic currents on a corresponding conductive plate can be

obtained by duality. The impedance plate is then the superposition

of both types of current sheets.

I

4
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CHAPTER II. THEORETICAL BACKGROUND

2.1 Representations of the Electromagnetic Field

Integral representations are powerful tools in the theory of

electromagnetism. They provide a means for the derivation of

integral equations and of asymptotic low- and high-frequency

approximations.

Several representations are available. Although they will

be shown to be equivalent, each possesses certain properties that

make it advantageous for some applications and not for others.

A couple of cases will demonstrate this point.

The total field is the sum of the scattered and incident

fields. Since the latter is given, only the scattered field will

be considered.

The most widely used representation is due to Stratton and

Chu (Stratton, 1941; p. 464). It expresses the scattered field

in terms of the surface values of both the electric and magnetic

fields on the surface S of a scattering body:

i ikZ f nkZ G dS' f '*E G dS' + J^ n'E G dS' (2.1)

'AS S S

and

S = -ikYf n'E G dS' Vn'^H G dS' (2.2)
SS S



Identifying n x H, n x E, nE and n.Hwith , J*, p and p*

respectively, the various integrals in (2.1) and (2.2) are recognized

as vector and scalar potentials. Hence the fields can be written as:

is ikZA - vo + vAA* (2.3)

and

Hs . -ikV* - W + vA . (2.4)

These two formulations are entirely equivalent.

The charges and currents are related and the relations are

given by the continuity equations:

v.J = ikYa (2.5)

* and

VJ* =-ikZ *  (2.6)

These equations supplement (2.1) and (2.2), or (2.3) and (2.4) to

form the complete representation.

Another formulation attributed to Franz (Jones, 1964) requires

knowledge of the induced currents alone:

is +Zn G dS' n'E G dS' (2.7)

S S

<1k ^ V.)G

fS E G(k2+ + fl fE;+ H G dS' .(2.8)

S S
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The terms of this representation are electric and magnetic

Hertz potentials (linearly related to the vector potentials). An

unconventional derivation of the representation which avoids the

use of Green's theorem is presented in Appendix A.

It is well known that the fields represented by the Franz

formulation are Maxwellian. Stratton-Chu fields, however, satisfy

Maxwell's equations if and only if they are equivalent to those of

Franz.

By applying Stokes' theorem and Maxwell's equation

VAR -ikYi to r v'[HG] -n dS' it is found that (ibid)

VV n'.H G dS' = -ikYvJ n'-E G dS' VG H-dc (2.9)
S S C

An analogous result holds for the dual case (Y H, H -- , Y Z).

It is thus evident that the two representations are equivalent when

the line integrals vanish. The task is therefore to show that the

line integrals ,e indeed zero.

The case of a smooth closed surface S is trivial. The closed

path C degenerates into an arbitrary single point of S and the

line integrals disappear.

Investigation of the behavior of the fields in the vicinity

of an edge establishes the same result for surfaces with edges.

Attaching a local cylindrical coordinate system p, , (Fig. 2.1) and

imposing the condition that the energy stored in the neighborhood

of the edge is finite, the fields are seen to be 0 (p
q -i) with q > 0.
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Fig. 2.1 Local Coordinate System Attached to the Edge.
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The p and, components of Maxwell's equation v x H = -ikYE

are:

"-A H -ikYE (2.10)

and
aH aH

*3 -- pik E . (2.11)

If all components of E and H are o(pq1, then the first term on the

left hand side of (2.10) and the second term on the left hand side of

(2.11) are o(pq-2). Since the other terms are O(pq1) it follows that

lim 1 aH_ 0 (2.12)

€ aHz
lim = 0 (2.13)

P o

The other possibility is that Hz is O(pq) in which case lim Hz a 0.P.O.

Equations (2.12) and (2.13) have two distinct solutions: one

has q $ 1, implying lim Hz = 0 (the other components can be singular),

and the other has Hz independent of both p and 0, implying q a 1.

In both cases, Hz is continuous at the edge, independently of the

boundary condition that holds on S. In particular, if S = S U S
1 2

where S and S are (open) smooth surfaces that meet at an angle
1 2

al ong C

-I(

~ ~. -
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faS'- (R IT )G dc (2.14)1 2
SUS

1 2 C

holds. H and H are the values of R on S and S respectively.
1 2 1 2

Since His independent of * the integral on the right-hand side

of (1.14) vanishes. This result can be generalized when S = * SM

and S has several edges.

The continuity of A also guarantees the disappearance of the

line integrals in the case of an aperture in a perfectly conducting

screen. The integral fV'GH -dc vanishes on the screen, hence it
C

vanishes on the aperture side of the edge also.

In the next section it will be shown that the choice of

representation has a profound effect on the convergence properties

of a numerical solution.

2.2 Numerical Solution of Integral and Differential Equations by

the Moment Method

2.2.1 General Procedure. The method of moments (cf. Harring-

ton, 1968) was devised to solve numerically equations of the form:

Lf = g ; in nC R , (2.15)

where L is an operator mapping the unknown function f E X (over Rq )

into the known function g C Y (over RP).

An inner product is defined in Y as

<u v> =f uv dxp ; V u,vEY (2.16)
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A set w CY of weighting (or sampling) functions is selected.

Taking the inner product of the given equation with w we get

<wm,Lf> <W,g> ; 1 m <

The function f is then expanded in terms of a basis {fn} of X

f= Z anfn (2.17)

n=1

and the series is truncated at some finite N. The result is a set

of M algebraic equations for the N unknown coefficients:

N

Z <WmLfn> an = <Wmig> (2.18)
n=1

or, in matrix notation,

W j , (2.19)

where Wmn = <wmLfn> and gm = <wm,g>. The system of equations

(with M = N) is solved by Gaussian elimination and backwards

substitution.

2.2.2 Subsectional Bases and C°[Q] Continuity. The choice

of the basis {fn in which f is expanded is a crucial step in the

solution. Obviously a set of basis functions which resemble the

required solution, that is, satisfy the same boundary conditions and

have the same continuity properties, will lead to rapid convergence,
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and only a few terns of the expansion are then needed to

describe f.

Generally it is difficult to "guess" a good basis, and it is a

almost impossible task for a domain a of complex geometry with

complex boundary conditions. It is much easier to divide n Into

subdomains nN such that

N

U aN (2.20)

n-i

and use basis functions which have support on n:

r

fn (2.21)

Such a basis is called a subsectional basis.

Quite often the nature of the operator L dictates that f

possess certain continuity properties. A subsectional basis may lead

to a representation of f which does not possess the required

continuity, and thus results in poor convergence.

For a planar domain a C R2 there is more than one choice of

a subsectional basis that guarantees C°[a] continuity. One

possibility, which will be extensively used in this work, uses

rectangular cells:
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" • X ,y)I XM "x " 1 x__ 1 x_. + A"xl Yn Y !.Y -- --

(2.22)

and basis functions that are the tensor product of two quadratic

polynomials in c and n respectively, C E x - xm , n y - Yn

a + + a n + a En + a C2

1 2 3 4. 5

+ ; n 2 + a E2. + a En2 + a t2n2 (xy) " It
6 7 8 9

fmn .(2.23)

o (x,y) € mn

The term in e2n 2 may eventually be dropped, but it is more

convenient to retain it for the time being.

The coefficients ai (which depend on m,n) are selected so that

f attains its exact value at nine predetermined points of Qmn" It

is shown in Appendix B that if these points are taken to be the

four corners of Smn' the four midpoints of its sides and its

center, then

N

f = En C° .
.n=1
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With this choice of nodes in nmn (Fig. 2.2a)

f(x + Al y) f(X -Ax S)
al~~~ a xMm2
{XnY) 2 AX

fP m'nn + ""

=f 2c (x + + -x S

fX2 ,Y) 1 Ay

4 fI m2f)x3

a2f f(XmYn + ) + f(xmYn - 2f(XmYn

ay2f 6
y (Xm,yn) Ay

(2.24)

and the right-hand sides are finite difference representations of

these derivatives, numerically equivalent to (2.17) with (2.23).

The expressions given by (2.24) are particularly useful when f is

a weighted integral of another unknown function to be determined.

The choice of sampling points is crucial. The dramatic

effect of loss of continuity as the points 1,2,3, and 4 are moved

away from the boundary of Q will be demonstrated when numerical

results are discussed.
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(a)

(',)

Fig. 2.2 (a) The Nodes of a Rectangular Cell; (b) A CorrespondingGeneral Quadrilateral Cell.
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Before concluding this section, it is appropriate to remark

that the rectangular cell omn can be mapped into a general

quadrilateral cell. A quadratic transformation, based on the same

nine points, is a very convenient means to effect the mapping at

least approximately (Fig. 2.2b). The applicability of the method

is thus extended to more general geometries.

2.2.3 Subsectional Bases and Cl[] Continuity. Some

operators, such as 32/xay, impose higher continuity constraints

on f, and this particular operator requires C'[Q] continuity. It

is much more difficult to achieve this kind of continuity with

subsectional bases. Both f and its partial derivatives must be

specified at the nodes of Qmn. Even then, no simple polynomial

expression which ensures continuity of f and its first derivatives

is possible (Zienkiewicz, 1977, Chapter 10).

Many attempts have been made to overcome this difficulty,

with different degrees of success [ibid, Chapters 10-12]. For

mechanical problems it has been recognized that the best approach

is to reformulate the problem so that only C [o] continuity is

required. The original equation (2.15) is replaced by a set of

equivalent equations involving operators of lower order. It

turns out that it is more economical to increase the number of

equations than to use more parameters per cell.
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CHAPTER III. SCATTERING BY RESISTIVE PLATE-DYNAMIC FORMULATION

3.1 Integral Equations

Integral equations for the induced currents are derived from

the field representations by taking the observation point to lie on

the surface S of the scatterer and applying the boundary conditions

there.

Several E-field formulations are possible but the H-field

equations becomes an identity for an infinitely thin open body.

Selection of the preferred equation for numerical treatment is based

on the conclusions of the preceding chapter. From a numerical

standpoint, the equation that imposes the lowest order of continuity

requirements is the best.

One equation is deduced from the Franz representation using

the boundary conditions (1.3) and (1.4):

Ri,5 = z^jinc + F z^(k 2 + vv.) 5 G dS' (3.1)

S

The dyadic operator vv contains second order mixed derivatives such

as a2/axay and requires Cl[S] continuity of the vector potential.

This is hardly encouraging and the need for other formulations is

evident.

Operating on one Cartesian component of (3.1) with 32 /3X 2 + k2

and with a2/ay2 + k2 on the other, subtracting and simplifying
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the incident field term using all three relations

V Einc = 0 , v x Einc = ikZH inc

and
(V2 + k2)iinc = 0

leads to an equation for one component of J. Repeating the whole

process with the two differential operators interchanged results in

an equation for the second component. Combined together they

provide the integral equation:

ikZ~( + 2 )  j G S Ikz^@ inc

ikZ(V2 + k2 ) JG dS' = ikZz- + R[k2 + Z^V(Z.V)]j (3.2)P az

This is valid only if R is constant, but the equation has even more

serious shortcomings. C1 continuity of J itself is now required.

The equation fails at grazing incidence since aHinc/az introduces

a factor sin e i into the excitation term. The transition to a

perfectly conducting plate is also discontinuous and when R = 0

there is no coupling between the two components of the currents.

Satisfaction of the boundary condition z.H = 0 (on S) is no longer

guaranteed and must be imposed separately.

The only advantage this formulation may offer is the

possibility of partial integration. When R = 0 this equation was

integrated by Mittra et al., (1973) by using Green's theorem in a

plane and the two-dimensional "free space" Green's function. Their

method is capable of removing the differential operator V + k2 .

i.m4,m m m Im m l• i
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However, it is impossible to integrate zV(zv^) at the same time,

and thus, if R 0 we are still left with the requirement for C1

continuity of J.

A third set of equations can be derived from the Stratton-Chu

representation. The boundary conditions (1.3) and (1.4), when

substituted into (2.1), produce the integral equation:

Ri^J = z^Einc + ikZi^ J G dS' - z^V P G dS' (3.3)

subject to the constraint

J . k 2. (3.4)Z E

The highest order continuity required is C°[S], and the burden of

continuity is now shared between the scalar potential (in 3.3) and

the current (in 3.4). The price paid is the increased number of

equations that have to be solved simultaneously. In a later section

it is shown how that difficulty is circumvented.

Having a valid and convenient formulation, it is feasible now

to discuss such matters as uniqueness of the solution and numerical

procedures.

3.2 Uniqueness of the Solution

Jones (1974) has examined the question of uniqueness of the

solution in the case of a perfectly conducting solid body. He

showed that E-field integral equations have more then one solution
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at wave numbers which are elgenvalues corresponding to the TE modes

of a cavity, identical in size and shape to the body and having

perfectly conducting walls.

Regarding the plate as a limit of a hollow right prism of

altitude h, and repeating Jones' argument, we see that if the

equations (3.3) and (3.4) have more than one solution, the

differences J,p of these solutions satisfy

RJ : ikZn^fJ G dS' - nV f-G dS'

and

-ik PLS•J =Z Z £

These are the equations satisfied by the eigenmodes of the

cavity. All the eigenvalues of the equations are complex, but

even so the accuracy and stability of the solutions for k real may

be seriously affected by the presence of a nearby complex pole.

Every mode of these equations can be put into a one-to-one

correspondence with a TE mode of a perfectly conducting cavity

of the same geometry. As the altitude h goes to zero all TE modes

disappear. Hence the solution of (3.3) and (3.4) is unique for any

value of R, including R =0.

+I
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3.3 Numerical Solution

Equations (3.3) and (3.4) are solved by the moment method.

Written in scalar form, these equations are:

RJ E inc + ikZ JxGdS' - - G dS' = Einc + ZA
X ax f x x ax

(3.3a)

inc .rc
RJ E + ikZfJyG dS' f= nE +ikZA yRy y jY yJ y y ay

(3.3b)

R - J x ai y (3.4)

If the finite difference expression (2.22) is to be applied to

(3.4), it is clear that the sampling points of JX and Jy must be

shifted by Ax/2 and Ay/2, in the x and y directions, respectively,

relative to the sampling point of p. Bearing in mind that it is

inadvisable to sample p on the edges of the plate (where p is

singular if R = 0), and that Jx and Jy are zero on edges parallel

to the y- and x-axes, respectively, one arrives at Glisson and

Wilton's (1980) scheme of interwoven meshes (Fig. 3.1) for a rectangular

plate.

A corresponding expansion of the unknown functions is

x -- rect - L rectL (3.5)
x p=1 q=i P +I/2,q A xAy
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E

xE

2c,



-28-

F 1 1 1
J y =yp~q+112 rect - - rect (3.6)

p=i q=1 y p ' q+I /2

A fxx 1 y- y1
S rect rect (3.7)

p= q1p,q rcLA j [Ay

where

x =01 /2,q y
M+1/2,q p,1/2 /

from the edge condition. Using sampling functions

W x = 6(x - Xm+11 2 )6(Y - Yn)

Wy = 6(x - x)6(y - Yn I/2 )

W = 6(x - Xm)6(y - yn)

for (3.3a), (3.3b) and (3.4), respectively, and using (2.22),

equations (3.3) and (3.4) are converted to

= Einc +ikZA
Rm+I/2,nJxm+i/2,n Xm+l/2,n Xm+/2,n

-€ ) (3.8)AX m+l,n m,n

4 ]
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! = EInc

Rmfl~f+1/2J En ii2  *+E +kZA
Ym,n+/2 YM,n+1/2 ym,n+1/2

, - ) (3.9)Ay mn+1 mn

iZ 1 (+ j )+ (J -J ) + = 0
k Ax Xm+1/2,n Xm-1/2,n Ay Ym,n+1/2 Ym,n-1/2 mn

(3.10)

An expansion of the potential corresponding to (3.5) through

(3.7) is

M-I N

A J GQ dS'= L Z 'Xm+1/2,n x m+i/2,n = -- /q= J 2q

Gm+1/2,n,p+1/2,q etc.

where

G =G(r,')

Y=yv

and

G f ~ dS'
S ,

Using the translational symmetry of G:

m+a,n+s,p+,q+ =Gmn,pq
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substituting (3.10) into (3.8) and (3.9) and rearranging, the final

form of the equations is obtained as:

M-1 N
incrkG+ G

kYx.+ 1 n = 2. x+ LkG mn~p,q + 2 (m+1,n,p,q

+ Gmj npq -2G m,n,p,q) + ikYRp+/ 2,q 6np 6q]

M N-1

...(G -* ~Yqi p,q+1/2 AxAY m+1,n,p,q Gm+l,n-1,p,q

Gm,n,p,q + mn-i ,p,q (3.11)

M-1 N
inc

ikYE' 2~ Z J (G -
Ym,n+1/2 p= qi p+1/2,q AXAY m,n+1,p,q rn-i ,n+1 ,p,q

M N-i

~Gm, n,p,q + Grlnipq) + Y Z y~+
pzl q=1 ~ +/

k2 -~~q+--( m ,lp,q +Gm,n-1 ,p,q 2Gm,n,p,q)

+ ikYRp q+1/2 6mP~nq] (3.12)

4
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The calculation of the coefficients G , , is discussed in

Appendix C. The final step is to solve (3.10) and (3.11) by Gaussian

elimination and backwards substitution.

One point deserve further comment. Equation (3.4) was

substituted into (3.3) only after it was converted into the form

(3.10) by using (2.22). This way the continuit, was preserved,

but the number of coupled equations was reduced proximately by one

third. As a check, numerical results of (3.10) and (3.11) were

compared with the currents calculated from the corresponding

equations with (3.10) kept as a separate equation. The results were

identical to five significant decimal figures.

Having determined the induced currents, it is now possible

to calculate the far field.

3.4 The Scattered Field and Radar Cross Section

The far field is derived from the currents using the Franz

representation and the far field approximation:

r

JI--F'J - r- r.'

and is

Ss eikr / ^ ikr
E - e~- r; W= j -ekr d"' e r (3.13)

with
eIkr

9s Z ;J - -Z rS(r) (3.14)
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From formulas (3.5) and (3.6), S can be expressed as:

ik2Z cos 2 as sin c(Fy cos Fx sin 0s)

-F sin2 6Si 1 CS0 Cos (F~ sin O- F Cos * ) -Fy sin2 es]

+ z sin es cos es(F x cos 4s + Fy sin is) (3.15)

where

F f eikrr dS' =axAy sinc cos e Cos

* • sinc Cos 0 s sin 0sinc1 2 S1Xp+l/2,q
p=i q=i'

exp [-ik cos es(xp+1/2 COS s + Yq sin s ) ]

M N-1 '

+~ z z J / exp[-ik cos es(x cos *s + Yq+1/2 sin S) }

p=1 q=1

(3.16)

e is measured from grazing an'!

^ cos es cos s + y cos Es sin s + z sin 8s

is a unit vector in the direction of the observation point

(Fig. 1.1).

! . 4
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A normalized quantity corresponding to the scattered far field

is the bistatic scattering cross section, defined as (Crispin and

Siegel, 1968):

a(r) = lim inc (3.17)

- inc
E is measured on the surface S. For a plane wave incidence

(3.17) can be written as

x IS()1 2  (3.18)
i2

The value of a corresponding to r = -k is called the backscattered,

or radar cross section.

Equation (3.17) or (3.18) does not reveal explicitly the

dependence of the scattered field and its polarization on the

polarization of the incident field. There is no uniform convention

as to how to describe this dependence in the general bistatic situation

for an arbitrarily shaped body. For a plate, it is convenient to

decompose the fields into components parallel and perpendicular to

the z = 0 plane (Fig. 1.1), and to treat separately the cases of

E- and H-polarizations, i.e., E inc or Hinc parallel to the plane and

perpendicular to the direction of incidence. A general incidence

is a superposition of these two cases. Further simplification

results from choice of the x-axis parallel to a (b), the direction of

polarization of the incident electric (magnetic) field. With this
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choice of the coordinate system, the left-hand sides of (3.11) and

(3.12) are ikY exp(ikyn cos Yi) and 0, respectively. Restricting

the point of observation to the plane of incidence, i.e.,

s= = /2, the direct polarized component of the scattered

field becomes actually parallel to the incident field (of a given

polarization). An explicit expression for (3.18) is then

F k4Z X12  (3.19)
A2 16r3

for direct polarization. The cross polarized current is directed

parallel to

u = r x x y sin es - z cos es  (3.20)

and

k4 Z2 Fy12 COS 2 e (3.21)

X2 1670 y (

The corresponding integrals are given by

M-1 N

= Z Z ' 1 exp(-ikyq cos es) (3.22)

p=1 q=1

and M N-I

Fy = JypI 2 exp('ikyq+I/ 2 cos es) (3.23)

V p= q,1

respectively.

V.-o
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3.5 Computed Results and Comparison with Experiment

Computations were carried out for rectangular plates illuminated

by an E- or H-polarizaed plane wave, incident in one of the principal

planes of the plate, i.e., the principal axes of the plate coincide

with the x- and y-axes. The direction of observation was confined to

the plane of incidence.

Computed and available measured results for 1.16x x 0.85x

perfectly conducting and resistive plates are compared in Figs. 3.2

through 3.5. The resistive plate is a composite of a 800 Q/square

resistive sheet sandwiched between two 3.3 x l0-3 A thick dielectric

plates. The relative dielectric constant of these plates is

Er = 2.53.

Figure 3.2 displays the normalized radar cross section as a

function of the angle of incidence 8. for E-polarization with the

field parallel to the long side of the plate. Figure 3.3 presents

the corresponding results for H-polarization. Figures 3.4 and 3.5

give the results for E- and H-polarizations with the fields parallel

to the short side.

The experimental results measured over an angular range of

1800 were folded into a 900 display, revealing some asymmetries about

I,. normal incidence. Examination of the levels of the peaks at that

incidence at different polarizations show inconsistencies.

Nevertheless, since this was the only available set of measured data,

it was used for making a comparison. With the exception of the

results for the resistive plate in Fig. 5.5 and the deep nulls in

ii
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4all the other cases, computed results are within 2 dB of the

experimental data and usually much closer. There are two reasons

to question the validity of the experimental data of the particular

case in Fig. 3.5. At normal incidence, the maximum level is several

dB higher than the corresponding peaks at other polarizations, whereas

the computed values are mutually consistent. The measured lobe near

grazing is so untypical for H-polarization (theoretically the plate

should be invisible to H-polarization at grazing incidence), that

one should suspect a stray reflection from the experimental setup.

As to the other discrepancies, all computational methods consistently

predict deeper nulls than are actually measured. This is the effect

of noise filling up the nulls. Otherwise, the agreement between

computed and measured results is quite remarkable. It is even more

so considering the fact that owing to the zero edge conditions, the

numerical procedure uses an effectively smaller plate. A zero current

is enforced on half cells along the two edges of the plate

perpendicular to the current. For a plate divided into 14 x 10 cells

it means a reduction factor of 13/14 or 9/10, depending on the

direction of incidence and polarization. At normal incidence the

radar cross section is roughly proportional to the square of the

area. Thus, the corresponding reduction factors for the cross

section are -0.65 dB and -0.92 dB, respectively. This brings the

results into even closer agreement with experimental data.

The effective resistivity of the composite plate was

computed as (Senior, 1981):
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Req R ( - 2ikd[cos ei - YR(e r  (3.24)

where d is the thickness of the dielectric plates. The imaginary part

of Req is quite small and the value of Req at normal incidence was

used for all angles. There are other uncertainties associated with the

values of er: its imaginary part, the thickness d and possible air

gaps between the dielectric plates and the resistive sheet. It is

therefore surprising that such a simple model produced such good

results.

At E-polarization and grazing incidence the dominant induced

currents on a perfectly conducting plate are edge currents along

the leading and trailing edges of the plate (Knott et al., 1971). A

possible qualitative model for the direct polarized scattered field is

an endfire, two element array of wire antennas along these edges.

This model is supported by the data for bistatic scattering in the

principal plane for grazing incidence, presented in Fig. 3.6.

Results for 450 and normal incidences with the same polarization are

shown in Fig. 3.7 and Fig. 3.8, respectively. In both cases, maximum

scattering occurs in the specular directions.

Typical current distributions for grazing and normal

incidences are shown in Figs. 3.9 through 3.11. The large front

and rear edge currents on the metallic plate are clearly visible in

those figures. The currents on the resistive plate do not possess

such singularities and their variation in the y-direction resembles

that of the physical optics currents (except, of course, for an

"J ... . -,
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attenuation factor). The variation in the x-direction is of the same

form in almost all cases; therefore only one typical distribution

is presented. Two transverse cross sections are shown for the current

on the perfectly conducting plate and one for the resistive plate

(on which there is very little variation from one location to another

along the y-axis).

An important effect of the cross polarized currents is the

coupling they provide between the front and rear edges. This

coupling mechanism was discussed by Knott et al. (ibid). Figure

3.12 displays the behavior of the edge currents, at grazing incidence,

as a function of distance along the edge. Two prominent features

of this graph are the side edge current buildup and the nonsinu-

soidal nature of the rear edge current. These characteristics have

been detected experimentally by the above-mentioned authors. On

the resistive plate there is no such buildup of the side edge current,

which is small compared with the currents on the leading and trailing

edges.

Results for scattering by plates which are small compared

to the wavelength computed by the procedures described in this

chapter are presented in Chapter V, after the topic of low frequency

scattering has been discussed in Chapter IV.

1,4 ," -- ii!u • i
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CHAPTER IV. LOW FREQUENCY SCATTERING BY PLATES

4.1 The Rayleigh Series

The advantage of using asymptotic expansions is that many

analytic and semi-analytic results can be obtained for scatterers of

arbitrary shape. The Rayleigh series is such an expansion, valid

in the low frequency regime. The expansion parameter is kD, where

D is a characteristic dimension of the body. The series

= Z (ik)m Em (4.1)

m=o

and the corresponding expansion for H are convergent in the vicinity

of the body when kD << 1.

The individual terms of the Rayleigh series (4.1) satisfy the

reduced Maxwell's equations

VE = 0 0VH = 0

VE = ZH 1  vAH -YEm~ mlm  m M_1 Hm Y m- 1 (m >I

v-Em = 0 v-Hm = 0 ; (m > 0) (4.2)

Stevenson (1953) has offered a systematic method for the

determination of these partial near fields. The essence of his

method is that the terms are obtained successively as solutions of
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potential problems. The near field terms are then used to produce a

multipole expansion for the far field. Later, Kleinman (1967) showed

that in some cases the method fails to produce terms beyond the first

order (m = 1) term and amended the procedure. In principle, the

revised method can be used to determine the partial fields of any

order. However, if analytical expressions are desired, there is a

difficulty associated with the resistive (or perfectly conducting)

boundary condition. For every m, Em is the sum of a known vector and

a gradient of a potential function (Kleinman, 1977). The boundary

condition yields equations for the tangential derivatives of that

potential. In some cases, such as m = 0 or bodies of special

geometry, these equations can be integrated analytically to yield a

standard Dirichlet boundary condition. (Numerical integration

involving an open line integral is always possible.) In some instances

at least, it is possible to derive analytic expressions for

the first order far field, in terms of zeroth order potentials,

without finding the corresponding near field first.

4.2 The Scattered Far Field

When determining the scattered far field at low frequencies

the Franz representation displays a clear-cut advantage over that of

Stratton. Franz's formulation is the "natural" representation for the

scattered far field, since that field is generated by the induced

currents only. The induced charges have no direct effect on the

radiation field. One near field term is needed to determine the

corresponding far field term if the Franz representation is used,
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but two near field terms are required when the Stratton-Chu

representation is employed (Kleinman, 1967b).

Using the Franz formulation with electric currents only and

the far field approximation, the scattered field is given by

ES - ikZ eikr ^ ̂  e -ikr-r'
rikZ rrj knI) e dS'

.ikr E Z (  p f- -ikz ---- r~r (-1.)P __ik I(nH\(r*'- ' dS'

kD<<l p=o

Substituting expansion (4.1) for H and collecting equal powers of ik,

the field is expressed as:

eikr ^^{i~^f
is -ikZ i __(;nH)dS' + ik (n^H1 )dS' -

- ik f(nHo).r' dS' + (ik)2f ) dS' - (ik)2f )(r -) dS'

+ (k- ' f (n 0)( r' )2  dS') + O(k )

Further simplification is obtained by the vector identity (Jones,

dS- f (^ .v',i).' dS' (4.3)
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Hence by (4.2)

n ° dS' = ~ ')r I dS' =0,

fn;A dS' = -Yf(n.Eo)P' dS' ,

n.H dS' = -Y f(n.E )rdS'

Finally

4----r- srrP + Zrmo + ikrrF(r) + O(k4) (44

47r r O r- 0  ZA 0  rr J

where from Kleinman (1973)

Po = £f(nEo)r' dS' (4.5)

mo = 1 r'^(n H)dSu (4.6)

and

dS' + zf(;H dS'

Z f F , 2 dS' (4.7)

rn-
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An alternative and more symmetric form is

ES -s k2 e + 0m)+(k4)
s  -k r ~7r- -r rr 0(p + ikp) + Zr.(m 0 + i , (4.8)

which is obtained by further applications of (4.3) to V = H (r.r')i 1

and to V = H (r.r')2 . However, (4.4) proves to be more convenient

for actual calculations. The quadrupole moments in (4.8) are given

by

(Kf (n.E dS' f- dS')
and .(4.9). ~ -- (-- n." H ,<,s. f ' <;Jo )'.P'dS'

Once the induced currents and charges are determined, the

far field can be calculated by (4.4) or (4.8).

It is now necessary to deal with the particular geometry and

constitution of the scattering body. The following sections will

focus on perfectly conducting and resistive plates. The perfectly

conducting plate is the more basic structure and is discussed first.

4.3 Perfectly Conducting Platelets

The first two terms of the expansion (4.1) of the incident

fields (1.1) and (1.2) are:

-inc a , H = Yb , (4.10)
00

Einc =a(k r) , inc = Yb(k*r) (4.11)
1 1
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The currents and charges on a flat Infinitesimally thin plate are

given as differences across the plate

J * _H+  (4.12)

and

P= . (4.13)

Dipole Moments. The static fields E and are
0 0

irrotational (see 4.2) and can be obtained from potentials. In

the case of rS, ES -v o where 0 is an exterior potential. The
0 0 0

corresponding incident potential is -a.F, and from the boundary

condition sE = _ jinc on the plate it follows that0 0

0= a.F + c on S , (4.14)

where c is a constant chosen to satisfy the zero induced charge

condition

f dS = 0 (4.15Y

~S -

Because of the form of (4.14) it is convenient to write

00 = ( xi)Oo (4.16)

i=I
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J

where the xi , 1-1,2,3, are Cartesian coordinates with x - z. The
3

potential o can be represented as
o0

o) M = - 1 Go dS'
S

and by applying the boundary condition (4.14) we obtain

-x -c 0 1 G dS' (4.17)

S
1 +

3 0which is an integral equation from which to determine - -r-.

On substituting (4.16) into (4.5) we have

= cP.a (4.18)
0

(Keller et al., 1972), where P is the electric polarizability tensor

with elements

+P = " z x dS (4.19)

S

which are functions only of the geometry of S. It is evident that

Pij = 0 if i,j = 3, and from (4.15), (4.17N and (4.19)

Pij Go T dS dS' (4.20)

The tensor is therefore symmetric, i.e., Pij = Pji, and has at most

three independent elements.
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The procedure for the magnetic field is similar: HS .. yV
0 0

where 0 is again an exterior potential in terms of which

% a Y ,oi_ z dS (4.21)

fS

(Kleinman, 1973). The boundary condition on the plate is z-H0

-z.Hinc , implying
0

= b.z on S (4.22)az

Therefore is normalized as

bo Z .3 
(4.23)

The representation

DG J0 f TZGo,o() ,3_ dS'

S

then leads to the integral equation
'Um

*.1
-1 = f Go 01 dS' (4.24)

az2  S

from which 31+ can be found. In terms of this

mo Y(b.z)zf '*° . dS (4.25)
s 0

[ .
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4

JU

implying (Keller et al., 1972) a magnetic polarizability tensor M

with just the single non-zero element

N f *31- dS (4.26)

S

The solution of equations (4.17) and (4.24) and the computation of

the dipole moments are discussed in Chapter V.

4.4 Resistive Platelets

The resistive plate is described mathematically by (1.3) and

(1.4). At k = 0 however, the condition p =0 must be explicitly

applied. The plate is therefore invisible as regards the static

magnetic field, i.e., Ho = 0 and (1.4) then implies that for all R,

E is the same as if R = 0. Thus, for a resistive plate, 6o = 0

and the electric dipole moment 5 is the same as for perfectly

conducting plates.

To determine how the low frequency scattered field is

dependent on R, it is necessary to examine the first order terms

in (4.4). Since H = 0 the third term of (4.7) is zero. To evaluate

the second term, zH has to be determined first. From Maxwell's

~. equations it is found that
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11

(z, H ) iVHz + Yz.(z^E o  (4.27)

and by application of (1.4) on S

Hz  = [xaE - 1-
ITL ax gTJ

YR H '] + YR " l
ik ax ay J ik az .

Hence,

z - -k b'z on S

In addition Hz+ = O.

The Cartesian components of H are themselves exterior1

potentials and therefore

H = " - -. G dS' = Gb. G dS' on S (4.28)

S S

Also, r--
z, = j z H I+  t dS'

S

3 z l_+ GO dS'
S

and hence, on the plate,
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L (z^H ) = - j2 -  z H + GO dS' (.9
az 1 a - o (4.29)

,is

Using (4.27), (4.28) and the fact that z^Eo  -i.a on S, the left-hand

side of (4.29) can be evaluated, and the solution of (4.29) can then

be written as

=zH -Yz^(z a)0o + l b-z u (4.30)

- where u is a tangential vector satisfying the integral equation

Go d' - 2 5() GO dS' (4.31)

C 9z2  S

with the line integral taken around the perimeter C of the plate,

and 3°  satisfies
0-

-l = a31 + GO dS' (4.32)iaz2 f 0S

-SSi, 1° is proportional to the magnetostatic potential for a perfectly

conducting plate. The numerical solution of (4.31) requires only

!. a simple modification of the program used to solve (4.32).
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1+

Knowing *3 and u, the third term of (4.7) is

z f z^HJ + r-H' dS' ---z.(za)fsw(+ r-r' dS'

+ ^j.S u(r')r.r' dS' (4.33)

S

The next step is to compute the first term on the right-hand

side of (4.7). Since H = 0, E is the gradient of an exterior0 1

potential (Kleinman, 1967), i.e., E = -vt with
1 f

- dS =0

S

Hence

2

z.l + i' dS' - -x TzI _ (xj + ci) dS'
fS i1 S

and from (4.14), (4.16) and the reciprocity theorem for exterior

potentials,

2

k4zE ~I dS' = j10 dS 1 (4.34)

S i S

o'-j| I N i I
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The zeroth order potential €o is associated with an incident

field having a = xi . If the corresponding first order scattered

magnetic field is Hi , Maxwell's equations imply- 1

1 I+ zz-1V- +
-01 " ' (4.35)

and when this is substituted into (4.34), the vector relation in

Jones (1964, p. 531) can be used to give

2

f .~i'dS' = Z X.i f zV'-

S i=1 S

From the boundary condition (1.4)

A lnc +
ZAV¢i = z nE RZ^(z^H f1)

*1+

a Z~~k Z 0~~I i.z)

and hence

2f z.fl.' dS' - -z ZZ f {(-+')-,oI ,

S i=1 S

I Z" H i .dS' (4.36)

I
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Finally, from (4.30)

-. .I -i)

H -Yz(z <x) 3 1 +  z.(K-Xi)u0I

and when the vectors are combined to eliminate the summation,

fz Ej dS' =j{(k.r-')z(za) - (b.z)z.(;iU)

s S

+ (a. )(i^ J - p)] + _ R zi.( a) o +. 31+

- Z [ (k.i,)i a - (,.z)a. ] dS' (4.37)

The complete first order contribution is therefore

F(r)=f (k- r) ?' z~c(z )- rb.z)zaz (.a)

S

+(au)( k) ] I- z_(z.a) iI . 3,°

+ 6[(r r)bzu k z k) ( (ki'a~u-5 (~ u] dS'

(4.38)

It is evident that F has components only parallel to the plate.

As expected, F is a function of R, and the presence of terms

inversely proportional to R makes explicit the discontinuous

behavior as R + 0. For any given R $0, there is a frequency (which
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depends on the plate dimensions) below which F no longer represents

a valid correction to the zeroth order contribution.

A case of some interest is that in which the incident magnetic

vector is parallel to the plate, so that b-z = 0. Then, z~k =

-(a-z)b and

F. (r = z . af [( 1 r 3 +- ds

S
r dS'+

Z 0 0

R J- L6-j riP R p3I 1_a. dS' . (4.39)R ~S Y

If, in addition, az = 0 implying normal incidence on the plate, the

second integral in (4.39) vanishes. The first two order terms in the

low frequency expansion then go over smoothly into the result for

a perfectly conducting plate as R - 0. On the other hand, if

k.z = 0 corresponding to grazing (edge-on) incidence, a is in

the z direction (and perpendicular to u) and F(r) = 0. This is

consistent with the fact that any electric current sheet is invisible

to a plane wave at grazing incidence for perpendicular polarization.
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CHAPTER V. NUMERICAL SOLUTION OF THE STATIC INTEGRAL EQUATIONS

5.1 The Electrostatic Potential

The electrostatic potential is derived from the integral

equation (4.17). Although the equation is not explicit because of

the unknown constant ci, the form of (4.17) suggests the following

splitting

i = () + c (i(2)5.1)

where and i(2) satisfy the integral equations:
0 0

-xi = f z Go dS' (5.2)

and S

~i(2)+
- G dS' (5.3)

S

respectively. With this definition and the total induced charge

condition (4.15), ci can be determined as3J +"E
c a3z, dS' az' dS' (5.4)

S S

Integral equations (5.2) and (5.3) differ only in the

excitation term and therefore can be treated alike. They can be

summarized by the single equation
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+ +

f 10 G ds' - (5.5)
S ( 2

The weakly singular kernel Go does not impose continuity

restrictions on the solutions, and the simple pulse expansions

M N r 1

a Z rect x p rect y J (5.6)3 = , apq xy

p=1 q=1

( I ) ( 1 ) ( 2 ) E u t o 5 5
are adequate,where ¢ stands for Ox , cy or o(0) Equation (5.5)

is converted into a set of algebraic equations

M N Jx 1 < M < M

Z Z a pq G -mnll - (5.7)p=1 q=1 mnpqn'1< n < N

when sampled by the impulse functions Wmn = 6(x-x m)5(y-yn).

G is similar to Gm,n,p, q of Section 3.3, except that it
mf,n,p,qmnpq

involves the static Green's function GO instead of G. Explicit

expressions for Go  are given in Appendix C.
r" ; m,n,p,q

The amount of numerical labor can be considerably reduced if

the plate is symmetric with respect to one or two axes. If r is the

reflection of F with respect to the xi axis, then

i1
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an-2 + ~() +DzI' = -(

and
(2) +

ao (r) - o~
3 z a z_

as is evident from (5.2) and (5.3). Then, (5.4) implies that

c i = 0 for plates with at least one axis of symmetry. Furthermore,

one component of (5.7) can be written in the form

M/2 NZ Za 1 < m < M/2a q(Go  - G 0 = X - m

p=1 q=1 m,n,-p,q m,n,-p,q < n < N

when that axis of symmetry is the x-axis and the cells are

numbered accordingly.

Similar equations hold for plates that are symmetric with

respect to the y axis or with respect to both axes.

Convergence of the, solution of (5.7) is enhanced if the cell

size is allowed to decrease toward the edge to better accommodate

a variation of -/2 (Meixner, 1972), where p is the distance from

the edge. However, the possibility of treating both electrostatic

and magnetostatic potentials by the same program makes that variation

,)f cell size undesirable.

Once Eqs. (5.7) are solved, it is possible to compute the

elements of the electric polarizability tensor using (4.19)
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together with (5.1) and (5.4). Numerical results are presented in

Section 5.3.

5.2 The Magnetostatic Potential

The integral equation (4.24) from which the magnetostatic

potential is determined is much more singular than (4.17). Conse-

quently, the more elaborate scheme of Section 2.2.2 must be used.

The first step is to replace the second normal derivative in

(4.24) by the surface Laplacian (a2/ax2 )+(a2/ay2 ), using the

definition of the Green's function: v2G0 
= -6. Then, the tangential

derivatives are represented by (2.22), and 31+ itself is

represented by a pulse expansion

= M N x rect y

3 1+  = L )L bp rect L  x PIrect y (5.8)

p=1 q=1

The resulting algebraic equations are

N N

1= 4 Z Z bpq +G -2Go

p=1 q=i AX2 ,n,p,q m-l/2,n,p,q m,n,p,

[Go + Go - 2G m
Lm,n+1/2,p,q m,n-1/2,p,q m,n,p,q

1 <m<M
- -N(5.9)
< <n< N
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Symmetry considerations similar to those presented in the

previous section apply to (5.9). M is computed using (4.26).

5.3 Selected Numerical Results

Several factors determine the efficiency of the numerical

solution of (5.7) and (5.9). The translational symmetry of Gmnpq

allows a very considerable saving of matrix filling time if equal

size cells are used. Because the matrix elements of (5.9) are

combinations of terms similar to the matrix elements of (5.7), it is

possible to incorporate the solution of both equations into a single

program, leading to a further reduction in filling time.

Several versions of the computer program were written. Programs

EPLT and APLT solve both (5.7) and (5.9) and employ uniform cell size.

EPLT is for plates that are symmetric with respect to both the x and

the y axes and APLT is for asymmetric plates. Program DPLT solves

(5.7) for symmetric plates. DPLT allows several optional variations

of the cell size. It seems that the quadratic taper:

3n2  (5.10)
N(N + l)(2N + 1)

is the best compromise of decreasing the cell size near the edge

without increasing the middle cells too much. N is the total number

of subdivisions per half plate along a given axis and n = 1,2,...,N

is a running index of the subdivisions, counting from the edge

towards the middle.
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A

Results of a convergence test for Px (=P yy) for a square plate

are displayed in Fig. 5.1. Curve No. 1 presents results computed by

EPLT, and curve No. 2 the corresponding results of DPLT. The

convergence rate is compared with that reported by Okon and

Harrington (1980, p. 76). They used triangular cells with area

coordinates but also tried uniform cells (curve No. 3) and tapered

cell sizes (curve No. 4). Since their program was intended to be

as general as possible, they have avoided taking advantage of the

symmetry. To make the comparison in terms of sampling points on the

plate, their reported number of subdivisions was divided by 2. For

the same N their matrices are four times as large. Other adaptations

of their results were multiplication by a factor 2 and an interchange

of the roles of the electric and magnetic dipole moments, since they

were concerned with apertures.

The vertical scale of Fig. 5.1 was greatly magnified to

emphasize the differences in the convergence rates of the various

methods. As expected, the methods using tapered cell size converge

much faster than those employing uniform cells. The quadratic aper

(5.10) is slightly more efficient than the linear taper used by

Okon and Harrington (ibid). Their results computed with uniform

cells have not converged yet, but seem to follow the same curve as

the results computed by EPLT.

There was a question as to how well our programs would perform

when applied to geometries that do not conform to rectangular cells.

The circular disc for which an analytical solution is available was



1 .05

1 .00

Pxx

0.95

*10.05 N 10

Fig. 5.1 Convergence of P x
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used to test the performance. Only cells whose center lay inside the

circle were retained and the effective shape was polygonal with

serrated edges. Since the potentials grow indefinitely towards the

edge, this procedure could conceivably produce large errors.

Normalized values of Pxx (=P yy) obtained by EPLT are listed in

Table 5.1 along with the corresponding errors. Results of Okon

and Harrington (ibid) are listed as well for comparison. Although

their grid matches the circular shape much more closely, their

results are better only when tapered cells are used. Comparison

of the results of EPLT for a rectangle and a disc shows that the

accuracy was reduced from a small fraction of a percent to 3 to 4 percent

when the same number of sampling points were used.

Figure 5.2 shows the convergence of M for a square plate.

The curve marked by 6 = O.5Ax was produced by EPLT. The one marked

6 = O.35Ax depicts the results of a similar program where the nodes

were allowed to move away from the edge of the cell, as shown in

the insert. A third line, marked 6 = 0, shows the results of

evaluating the second normal derivative in (4.24) analytically under
31 +

the integral sign, expanding 0° _ by pulses and point matching. The

rapidly decreasing rate of convergence is the result of the loss of

continuity. The utmost importance of C°[S] continuity is highlighted

in a different way in Fig. 5.3. M is plotted as a function of 6

for a fixed N (=2). Compared to the value displayed in Fig. 5.2,

the error in the computed value of M has a sharp minimum at

- 0.5Ax, where the numerical representation is continuous. Most
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Table 5.1: Normalized Dipole Moments for the Disc

Method N Mz/A3/2 Error Pxx/A 3/2  Error A
Zh(%) (%) Error (%)

7 0.4604 3.9 0.9082 5.2 1.3

9 0.4614 3.7 0.9184 4.1 0.6

LU 0 0.4608 3.8 0.9249 3.4 0.6

12 0.4620 3.5 0.9297 3.0 1.0

E 4 0.4506 5.9 0.8904 7.02 0.64

C ( 5 0.4572 4.5 0.9038 5.64 0.41

= 4 0.4754 0.7 0.9644 0.69 1.35

0 L u 5 0.4766 0.46 0.9570 0.09 0.83
0 0

Exact 0.4788993 0.9577986

II
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noticeable is the jump occurring between 6 = 0.4995Ax and 6 = 0.50&x.

The same behavior was observed for larger values of N, where the scale

was compressed due to the convergence. The convergence rate with

S= O.5Ax is comparable to that of Okon and Harrington (ibid) with
variable cell size. The opposite direction of convergence is

attributed to their use of different basis functions which under-

estimate the potentials over most of each cell.

The accuracy of the results for other geometries was again

tested using a disc, and the results are summarized in Table 5.1.

The accuracy is comparable to that of Okon and Harrington (ibid) with

uniform cells. The accuracy, however, depends on the particular

choice of the grid and care must be exercised in selecting this

grid. Meshes that consistently overestimate or underestimate the

area of the plate should be avoided.

Numerical results for the dipole moments of several plates

are presented in Table 5.2. The shapes of these plates ar- displayed

in Fig. 5.4. For each shape the normalized dipole moments are given

for several values of the length to width ratio (L/W). For a given

value of L/W, the dipole moments of plates that are convex in the

plane show very little sensitivity to the shape. Shapes that are

concave in the plane deviate from this rule, but the largest deviation

is associated with doubly connected shapes. These observations

are supported by the data of De Smedt and Van Bladel (1980). For such

shapes, normalization to (area) is no longer appropriate and,

in fact, the polarizability tensor elements diverge as the ratio

-'
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I L
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L/2 L/2

cross frame
L/2

W1

L
"L" Shape

Fig. 5.4 The Various Shapes Used in Table 5.2.
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Table 5.2: Dipole Moments of Various Plates

Shape L/W N M zz/A3/2 Pxx/A 3/2  P /A3/2 Pxy /

rectangle 1 10 0.4479 0.9889 0.9889
12 0.4474 0.9972 0.9972

2 7 0.4165 0.6055 1.655
9 0.4148 0.6151 1.681

10 0.4144 0.6185 1.691

5 7 0.3129 0.3513 3.782
9 0.3117 0.3566 3.839

10 0.3113 0.3584 3.859

rhombus 2 10 0.4050 0.5788 1.862
12 0.4052 0.5841 1.884

5 10 0.3028 0.3289 5.011
12 0.3027 0.3317 5.081

cross 1 8 0.4290 0.9816 0.9816
10 0.4268 0.9966 0.9966

2 8 0.3981 0.5954 1.762
10 0.3961 0.6045 1.787

5 8 0.3007 0.3393 4.343
10 0.2994 0.3442 4.399

frame 1 8 0.2490 1.496 1.496

10 0.2445 1.516 1.516

2 10 0.2423 0.9477 2.591

5 10 0.2201 0.5490 5.914

"L" 1 10 0.4027 1.095 1.095 0.3040
12 0.39P1 1.116 1.116 0.3070
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of the area of the plate to the area of a singly connected plate of

the same exterior contour becomes smaller.

In the case of a solid body a variety of isoperimetric and

other bounds on the tensor elements have been developed (Kleinman

and Senior, 1972), and may serve to adequately approximate the

elements, For a plate the more useful estimates are empirical in

nature (De Smedt and Van Bladel, 1980), but bounds can be

rigorously established from the fact that for a solid body

3 3 3 3

P = Z Z P ij(ax.i)(a'x.) and M = E E Mij(b'xi)(b'xj)

i=1 j=1 i=1 j=1

are increasinc set functions (Schiffer and Szego, 1949). By

regarding the plate as the limit of a right prism, we have

P! < P. < p11

(i = 1,2)

M < M11
33 - 33 3- 3

where the single and double primed quantities refer to the largest

inscribed and smallest circumscribed circular disks respectively.

For a disk of radius a, P = P = 16a 3/3 and M = 8a3/3. These
T11 22 33

bounds are not applicable for doubly connected shapes.

It is evident from Table 5.2 and other data published in the

literature (De Smedt and Van Bladel, 1980; Okon and Harrington,

1980), that Pxx and Mzz decrease with increasing L/W, whereas PYY
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increases (y is the long axis of the plate). The bounds in terms of

inscribed and circumscribed circular disks become useless for large

values of L/W. Other bounds, in terms of circular disks of the same

area, can be conjectured, but no mathematical proof is yet available

for them, and there is always a risk that some shape exist.s that

violates them.

As an additional test, a comparison was made of the dynamic

and the static programs. It is possible to compute (less efficiently)

the dipule moments by the program for dynamic scattering. Making

the plate very small compared to tne wavelength and using E-polarization

at grazing incidence so that bz = a.x = 1, the dipole moment Mo is

given by

m 0 _' ,J dS' _1 (X'Jy y'Jx)dS'
S S

and by using (3.5) and (3.6),

M N-i M-1 N

-m=l n=i m,n+l/2 m= n=1 m+/n

5.10)

Similarly,

M N

f x- x' dS' = xL-,y r"I m
S m=i n=i

iZ '5.11)

k T xryn J 1 /2n-~ n-" TIr~
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Computed results for square plates are shown in Fig. 5.5.

The values of Pxx (uP yy) for both perfectly conducting and resistive

plates approach the static limit as W decreases. The magnetic dipole

moment of the metallic plate is close to the static limit and the

magnetic moment of the resistive plate disappears. These results

were predicted in Chapter IV, and are used as an additional

1

I

I

* I

'4i
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Fig. 5.5 Convergence of the Dipole Moments to the Static Limit.
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CHAPTER VI. CONCLUSIONS AND RECOMMENDATIONS

The problem of electromagnetic scattering by resistive and

perfectly conducting rectangular plates was solved numerically. The

numerical techniques developed for this problem can be easily

applied to other problems involving E-fleld integral equations,

e.g., wire antennas, strips and non-planar open shells. Impedance

plates can be treated as well by superimposing resistive and conductive

plates.

The numerical procedure was tested by comparison with measured

data and with analytical and computed results for very small plates.

The accuracy of computed radar cross sections for plates of about

a square wavelength in area is 1 to 2 dB. The qualitative behavior

of the induced currents, especially the edge currents, checks well

with currents measured on slightly smaller plates.

Numerical representations were developed for a variety of

operators. Comparison of Eqs. (3.11) and (3.12) with the Cartesian

components of Eq. (3.1) reveals, a posteriori, the following numerical

representations for the differential operators a2 /axay and

32/ayax:

32f (*
aa (xm~y*) Ax&y nfX f (xm +-

- f(xy - A(x- )] (6.1)

J .', . .. I-., ) +
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and

32f IL.I x Y ~ ~ ~ y~

f(xmy) + f(x( -2n Yn]

that preserve the continuity of f given by (2.22) and (2.23), and

with these representations it is possible to deal with E-field

integral equations derived from either the Franz or Stratton-Chu

formulations.

At present, the computer program has two major limitations:

it handles only rectangular plates and the maximum area of these

plates is restricted to about a square wavelength. Both short-

comings can be removed or alleviated. There are several possible

courses of action which enable other shapes to be handled. The

most straightforward one is to try to approximate that shape

using rectangular cells. This method was used in the static

program and produced results for the dipole moments to an accuracy

of a few percent. The radar cross section is a weighted integral

of the induced currents and is thus expected to be somewhat

stationary.

Another approach is to map the rectangular mesh onto a grid

with general quadrilateral cells, to fit more accurately the given

shape. Experience with the static programs may discourage one from

taking this course. The cost of running the program that employs
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unequal cells, was higher than that of the other program, using

equal cells, with matrices about twice as large, (144 x 144)

compared with (64 x 64). The reason is that the latter program

takes advantage of the translational symmetry of the matrix elements

to reduce the number of different elements to M x N, where M and N

are the number of subdivisions along the x and y axes, respectively.

This cannot be done with unequal cells and the number of matrix

elements to be computed rises to (M x N)2 . The fill time of the

corresponding matrix exceeds the inversion time of the much larger

matrix in the other program.

A possible compromise is to use special shapes for edge

cells alone. Since the number of edge cells is but a fraction

of the total number, the matrix fill time will increase less sharply.

Another feature that can be incorporated into a special treatment

of the edge cells is to use singular elements (Zlenkiewicz, 1977,

p. 670; Jones, 1979, p. 506). This may somewhat increase the rate

of convergence, and its effect will be more pronounced in the static

programs, where the number of required sampling points does not

depend on the size of the plate.

Non-planar open shells can be treated by mapping the

rectangular grid onto a curved mesh. A simple example is Glisson

and Wilton's (1980) treatment of a bent plate. In general, such a

mapping will result in unequal cells.

Unlike the shape limitation that can be relatively easily

removed by a modification of the existing program, an increase-4(
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in the maximum plate size that can be handled requires Improvement

in the matrix inversion techniques. The interaction matrix for

the coupled integral equations is a dense matrix. When equal cells

are used, the matrix is symmetric and there is an additional hidden

symmetry because the kernel of the equation is of a convolution

type. The interaction matrices of one-dimensional structures with

convolution kernels are of Toeplitz form. However, there is no

way in which the corresponding interaction matrix of a two-dimensional

structure can be put into that form. Some progress in inversion

techniques for matrices that are close to Toeplitz matrices has

been reported by Friedlander et al. (1979), but the technique is

not applicable to plates with variable resistivity because the

elements on the main diagonal of the corresponding interaction

matrix are all different. Matrices of this type may have to wait

for hardware improvements that will permit the handling of much

larger matrices.

. ..4 - . .. ... ° . ... ' . .. ." ".... . . . . . . , , . . i ': .. . . . .
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APPENDIX A. DERIVATION OF THE REPRESENTATIONS FROM THE

DEFINITIONS OF THE DYADIC GREEN'S FUNCTION

The electric and magnetic dyadic Green's functions are

defined (Tat, 1973) by:

e  (A.)

and

iV 1  = k2e + T6(F- F') (A.2)

They also satisfy

VC _ - v-[ 6 (F - F')] (A.3)
k2

and

V.Gm  0 (A.4)

Equations (A.1) and (A.2) can be replaced by the uncoupled,

second order, vector Helmholtz equations

VVG e - k2 Ge  = T6(- ') (A.5)

and

V VAg m - k2g m  = 7j8(F- F')] (A.6)

I
.4_
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Levine and Schwinger (1950) concluded from (A.3), (A.4),

(A.5), (A.6) and the Helmholtz equation for the scalar Green's

function

V2G + k2G * -6(r - r')

that

Ge I [ VV  G (A.7)

and

Gm" v (TG) . (A.8)

Equations (A.5) and (A.6) are functional equations in a

distribution space (and so are (A.I)-(A.4)). Before interpreting

them in that way, it is necessary to specify the distribution space.

Gelfand and Shilov (1964) noted, in the preface to the second

volume of their book, that different distribution spaces should be

used for solving different types of problems. It is equally true

when solving scattering problems with different geometries. For

scattering by finite smooth bodies, the most familiar distribution

space can be used. This is the space of linear functionals over

the space of infinitely differentiable vector functions O(P'), with

finite support on the scatterer. A different space is required for

finite scatterers with edges. The test functions are differentiable

and bounded only in the interior of the support, and some of their:KJ -t
components may diverge towards the edges as p (0 < t < 1)

(Meixner, 1972). A countable set of norms for this space is
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I II p sup PPpF - 1,2
P'ES

With these norms the proof that the test function space is a

fundamental one and the construction of the dual space, are

exactly analogous to those of Gelfand and Shilov in Vol. 2, Ch. II

and Vol. 3, Ch. 1.

Other distribution spaces should be used for infinite and

semi-infinite bodies with or without edges, but they will not be

discussed here.

Equation (A.5) should be understood as a functional over

the test functions J(F'):

<vV~JeJ> - k2 <Ge,> = < >16,J

Since Ge is a convolution type distribution, the differential

operator can be brought outside to givek2 i
(vs<e - kj) <GeTa> - F k2 )

The last equality is obtained from the vector Helmholtz equation

for E. ge satisifes the radiation condition and the same boundary

conditions as E. The uniqueness of the solution of the Helmholtz

equation therefore implies



-91-

i E =ikZ <9e J> W k[ + L Vv<G,5>.

e t k 2  7

The distribution G corresponds to the ordinary function G(F,F');

hence

.; <G,J> = G(F,F')J(F') dS'

Jf

S

As far as the scattered field alone is concerned, the body

. is replaced by the induced currents, and the free space Green's

. function should be used. Hence

E, s = kZ + i- vv ]f dS' (A.9)

.k2

and a similar interpretation of (A.6) leads to:

AS G5 dS' (A.10)

Equations (A.9) and (A.10) are identical with the Franz

representation for the scattered field when only electric currents

are present. Magnetic sources can be treated analogously and the

complete representation is then obtained by superpostion.

hence
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APPENDIX B. PROOF OF C0 [Q CONTINUITY OF THE SUBSECTIONAL BASIS

Using the notation of Fig. B.1, the coefficients a.

expansion (2.21) for cell I are given by:

a = f(O)I

f(3) - f(1) f(2) - f(4)& 2 Ax 3 Ay

f(6) + f(8)- f(5)- f(7)
4AXAy

f(3) + f(l) - 2f(0) f(2) + f(4) - 2f(O)CL = 2 a ) 2
s AX2  6 Ay2

L 2 [f(6) - f(8) + f(5) - f(7) + 2f(4) - 2f(2)]
7 AX2 &y

a = - [f(6) - f(8) - f(5) + f(7) +2f(1) - 2f(3)]
8 AxAy2

a = (f(5) + f(6) + f(7) + f(8) - 2[f(1) + f(2)
9 Ax2)y2

i + f (3) + f (4)] + 4f (0). (8.1)
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Fig. B.1 Notation for Two Adjacent Cells.
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similar expression with coefficients z and variables
= x xm , I ) Y - Yn+j holds for cell II. Taking the

difference fm,n(&,n) - fm,n+i(C ,n) along the common line of

the two cells yields

- 1 2+ ~ ~ +-: + (a +oo> o+o) +o-

8 8 45 5 7 7 2  c 9 c 9  4

- = A + + C&2 . (8.2)

Using (B.1) and the corresponding expressions for cell No. II in

(B.2), the coefficients AB and C are obtained:

A =f(O - (9)+ f2)- f(4) + f(ll) f(2) +f(2) + f(4) -2f(O)

f(O) - f9)+f2+2

f(ll) + f(2) - 2f(9) = 0
2

Ax • B = f(3) - f(l) -[f(12) - f(lO)]+ f(6) + f(8) - f(5) - f(7)
2

+ f(14) + f(5) - f(6) - f(13) + f(6) - f(8) - f(5) + f(7) + 2f(l) -2f(3)2 2

f(14) - f(5) - f(13) + f(6) + 2f(lO) - 2f(12) = 0
2

II



&X2.c 2[f(3) + f(1) - 2f(O)] -2[f(12) + f(1o) - 2f(9)]

+ [f(6) - f(8) + f(5) - f(7) + 2f(4) - 2f(2)] + Ef(14) - f(5)

.4 + f(13) - f(6) + 2f(2) - 2f(1l)] + [f(S) + f(6) + f(7) + f(8)]

- 2[f(l) + f(2) + f(3) + f(4)] + 4f(O) - [f(13).+ f(14) + f(6)

I + f(5)] + 2rf(lO) + f(11) + f(12) + f(2)]- 4f(9) 0 o

N

Therefore f fn is continuous across the cell boundary.

Nal

4' w

! 1
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APPENDIX C. EVALUATION OF THE MATRIX ELEMENTS

.4

No closed form is available for the integrals

Kx &x/2 yX+Ay/2

G f G(x ,y, ,x',y')dx' dy'

x ,-AX/2 y).-Ay/2

of Section 3.3.

When the observation point is not in the Integration cell,

ithe ntegrand is smooth and regular. Numerical integration by 2x2

Gaussian quadrature is optimal (Zienkiewicz, 1977; p. 280). The

self-cell term is approximated, when the cell is small enough, as

follows:

*1, ."."'l,,-l dS' • ., , dS'-'Stn FmnF' I VIu

SGomm n + i kaxAy (C.1)

G is the self-cell term of the mtarix of the electrostatic
sinnmn

equation (5.7). This integral can be evaluated, using cylindrical

coordinates and the notation of Fig. Cl(a):

-f
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e e~yA2

CX ,yn) (XmpYn) AY/Z

2AX Ax

(a) Self-Cell (b) Self-Cell; node on the edge

(c) Observation point on the same row (x..~yn)

I (d) General case

4 Fig. C.1 Geometries for the Calculation of the Matrix Eliwents.
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G 4x/Zsect d /2 d y/2cscdoo " I' d o do'f d"f
m,0nm, n fo 0

a2 [Ax. h- Ax IA] (C.2)

The other cases of Fig. C.1 are evalauted in a similar fashion:

- 2Ax •stnh 2 + Ay csch (C.3)G m,n,m+l/2,n (c.snh 9&xff)

as illustrated in Fig. C.l(b), and

IL snh - B" sinh ° x + cy sch -. cschI L

GOM,n,K,n CIcI

C.4)

where

G X.KI+ Ax ajxm - A I
xz - UI K r

and

as illustrated in Fig. C.l(c) and
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G (a[sin-2 -X - slnh-' fl 4+ 0(sinh~-' sinh-1

% ,nK,!]L
+ -Y csch - csch~ + a[csch~ csch' J (C.5)

where = and 0 are as before and

and

-81 -

Computed results for square plates are shown in Fig. 5.5.

The values of Px (uPyy) for both perfectly conducting and resistive

plates approach the static limit as W decreases. The magnetic dipole

moment of the metallic plate is close to the static limit and the

magnetic moment of the resistive plate disappears. These results

were predicted In Chapter IV, and are used as an additional

verification of the computer program.

I -I
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